ON THE DIOPHANTINE EQUATION $3^x + 45^y = z^2$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diophantine Equation 8x + py = z2

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod  8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8)...

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

On the Diophantine Equation

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...

متن کامل

On the Diophantine Equation

In this remark, we use some properties of simple continued fractions of quadratic irrational numbers to prove that the equation x3 − 1 x− 1 = y − 1 y − 1 , x, y, n ∈ N, x > 1, y > 1, n > 3, 2 ∤ n has only the solutions (x, y, n) = (5, 2, 5) and (90, 2, 13). For any positive integer N with N > 2, let s(N) denote the number of solutions (x,m) of the equation (1) N = x − 1 x− 1 , x,m ∈ N, x ≥ 2, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2014

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v91i2.14